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ABSTRACT Our focus has been on the problem of finding an optimal as-
) ) ) ] ] signment of compression algorithms to nodes, in the sense of min-
In this work we investigate novel approaches for information pro- imizing the energy consumption, when different methods are avail-
cessing and representation in a sensor web. Sensor nodes captugge to choose from. Since the distortion/energy consumption trade-
information that is both temporally and spatially correlated. Ex- off also depends on factors such as network topology and medium
ploiting spatial correlation requires data exchange between sen-characteristics, different coding methods may be better suited for
sors, which should be minimized in order to keep power consump- gifferent parts of the network. These methods can consist in sim-
tion low and maximize the life of the system. We are investigat- ple coding schemes such as DPCM, or more complex ones, such
ing methods for sampling (which sensors should make measure-as wavelet transforms with an arbitrary number of levels of decom-
ments), routing (how does the information flow towards a fusion position.
center), processing (how to perform a wavelet transform along &' The pasic trade-off we have investigated is in the selection of
network route) and compression (how to compress the output of ,;mper of levels of decomposition for a wavelet transform, but the
the wavelet transform). All of these aim at maximizing the qual- game principle can be extended to other classes of signal represen-
ity of the data available at the fusion center for a given energy a1ion and compression. We seek to achieve efficient signal com-
consumption target at the nodes. In this paper we will report algo- yression by exploiting spatial signal correlation (e.g., temperature
rithmic, analytical and implementation progress made in this work aasurements in neighboring nodes in a sensor network will tend
over the last year. to be similar). In general, coding schemes that remove correlation
across multiple nodes will tend to lead to higher coding efficiency,
1. INTRODUCTION but at the cost of increased “local” communications, i.e., a dis-
tributed approach means that nodes have to exchange data before

Wireless sensor networks (WSN) can offer mobility and versatility the final compressed version (which is sent to the fusion node) can
for a variety of applications, such as object detection/tracking, en- be generated. o
vironment monitoring and traffic control [4]. Still, one of the main Prior work within our team [6-9] led to the development of
obstacles they face s that they often rely on batteries for power & distributed wavelet transform, where data is forwarded along
supply; thus limiting their energy consumption becomes essential Foutes towards the sink and each node contributes to data decor-
to ensure network survivability. relation (and more efficient compression) by performing wavelet
When data is acquired at multiple correlated sources, aggre_tran_sform operations on some of th_e data passing through_ it. In
gation involving in-network data compression can offer a more ef- Particular, our work proposed techniques (based on dynamic pro-
ficient representation of measurements, significantly reducing the9"@mming) to optimize the choice of wavelet transform for a given
amount of information that needs to be transmitted over the net-fouting structure [8] and then demonstrated that improved over-
work, thus leading to a potentially large reduction in energy con- all performance could be achieved by selecting jointly routing and
sumption. Prior work has addressed a number of distributed sourceVavelet transform [9]. _ _
coding (DSC) methods as a means to decorrelate data. While some ~ This paper describes our recent progress in extending, under
rely on information exchange and additional computation inside funding from the NASA-ESTO AIST program, the system pro-
the network to propose distributed versions of transforms, such asPosed in [9]. Section 2 provides a brief description of our original
Karhunen-Leve [16] and wavelets [25], others propose schemes distributed wavelet transform tools. Where simplifying assump-
that do not require internode communication, such as networkedtions were made in the original system we now consider extensions
Slepian-Wolf coding [11,23]. In general, DSC techniques face a that in some cases lead to very S|_gn|f|cant performance improve-
trade-off between i) more processing at each node to achieve mordnents. Originally, no entropy coding was used on the quantized
compression and ii) less processing which would require more in- Wavelet coeff!c!ents and th_e same number of bits were useql for all
formation (bits) to be sent to the sink. This trade-off has also been Wavelet coefficients of a given type (e.g., all low pass coefficients
addressed by previous research. [22] provides an analysis on thévere assigned the same number of bits). We are investigating en-
regions in a network that should favor compression over routing tropy coding techniques optimized for our system (Section 3) as
based on the impact of spatial correlation of the measurementsWell as bit allocation tools (Section 4) that allow us to assign num-

The performance of aggregation under a more general data modePer of bits in a much more flexible manner. While in our previous
is considered in [18]. work we simply considered standard 1D wavelet transforms and

adapted them to our scenario, we are now considering extensions

This work has been funded in part by the NASA Earth Sciencé-Tec  to allow 2D filtering (Section 5) and to more closely link filtering
nology Office under grant AIST-05-0081. and routing design via compressed sensing (Section 6). We also




consider the design of erasure-correcting codes to ensure reliableds [8]. The optimal solution can be found using dynamic pro-
delivery in our system (Section 7). We have already started imple- gramming [10].

menting various aspects of the system using programmable sen-  The gains achievable by selecting the best coding scheme are
sors with an eye towards testing our system both in-lab and within illustrated by testing an input process data that was created using a
a small scale real-life deployment (Section 8). To conclude, we second order AR model, with poles placed such that a reasonably
summarize the project status briefly in Section 9. smooth output would be generated from white noise (poles were at
0.99¢*731). Figure 2 shows the energy consumption of different
single-scheme methods (only one coding scheme for the whole
network) at different distortion levels, in a network with 3 clusters
of 5 sensors each (internode distance of 2m, intercluster distance
of 37m).

2. BASELINE SYSTEM

In [6, 7] we introduced energy-aware distributed wavelet compres-
sion algorithms for WSN [6] and introduced a partial coefficient
approach based on the lifting implementation [7]. Our goal was
to generate the wavelet transform coefficients at the sensors, at .
the expense of a little extra energy spent with a few “local” trans- °
missions, i.e., data transmissions between neighboring nodes that = “ .
are needed to actually compute the wavelet transform coefficients,

since the transform operates by filtering “across nodes”. If the s R
original data has sufficient spatial correlation, after quantization ool .

the wavelet coefficients can represent the original measurements « e S

using fewer bits, and the overall energy consumption in the net- ~ [ .
work is lowered by reducing the amount of information that has ol o "
to be transmitted. Our proposed partial coefficient approach [7] @
essentially allows all wavelet transform operations to be causal, in = A

the sense of that data is processed as it is being forwarded to the |
central node, so that only data from nodes already traversed is used s ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
to compute the wavelet coefficients. This requires the computation °8 1 12z 14 1e 18 2z 22 24 26 28
and quantization of “partial” coefficients, which are transmitted e

over a few hops, before being used to generate the final WaveletFig. 2. Energy consumption comparison between methods with 3 clusters

coefficients. . of 5 sensors each.
We assume that a sensor network acquires measurements from

a correlated data field. We consider data aggregation (compres-
sion) along a 1-D path from an edge to the sink (Fig. 1). This
path is assumed known, which implies that a routing algorithm
has been applied to the network first. Each sensor is assigned
numbern, starting from the edge. The network topology (intern-
ode distances) is known, and each node in the 1-D path can operate SQ?V,O P © e Ol?w o000

using a coding scheme chosen from a predefined set of available

coding SChem_es- In[8,9], aYa'|ab|e SChem_es are discrete waveletig, 3. Optimum network configuration obtained for simulation in Fg.
transforms using the same filterbank but with different number of
levels of decomposition: when the number of levels decomposition

is increased, the potential compression efficiency also increases (if Although the results suggest changes for just a few sensors
' P P Y when compared to the best single-scheme method, in general, such

Sglt?nlfz?rlr?z;]tli)cl)r?%ggﬁﬁd:&:gz;f:zgg %rgl#] ?T:é?: r?gjtegfiénr?égclig- behavior cannot be predicted beforehand. Network performance
9 an be affected by a number of factors like the coding schemes

to compute some of the wavelet coefficients). being used, network topology, number of sensors, medium prop-
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For this network, the optimum configuration such that energy
consumption is minimized, obtained by the proposed dynamic pro-
gramming framework is shown in Fig. 3.

1\{3\ P erties, data correlation, just to cite a few. Thus, a single-scheme

i S ) approach might not necessarily result in the near-optimal perfor-

mance. Optimization still proves to be necessary to point out the

Fig. 1. 1-D path with M nodes to the sink. configuration that will lead to the lowest energy cost. For the sim-

. o ulated case shown in Figure 2, for same distortion levels, the op-
Since the wavelet transform is critically sampled, the number i, m network consumed around 6% less energy than the best
of wavelet coefficients generated is equal to the number of nOdes'singIe-scheme method of Figure 2 (1 level wavelet) and around

Using the partial coefficient approach [7], the wavelet coefficient 3544 |ess energy than simple raw (quantized) data transmission.
corresponding to node is computed in steps: at nodea partial

version of the coefficient is first generated, which becomes a full

coefficient as it “incorporates” additional data from future nodes 3. ENTROPY CODING

(i.e., nodes closer to the sink). The number of hops required until

a partial coefficient becomes full depends on the specific transformOur previous work did not explicitly consider variable length en-

filters being used, refer to [7] for details. coding of the outputs of the distributed wavelet transform. Here
It can be shown [8] that costs can be attached to each possi-we address the task of using entropy coding to minimize the com-

ble coding strategy for a given node (number of bits and number munication cost between sensor nodes. To simplify our analysis,

of levels in the wavelet decomposition). Because of the structure we assume unidirectional transmission in a sequence of equally

of the problem, it can also be shown that costs for a given node spaced nodes with no path merges. In such a network, Figure 4

depend only on the physical position of the node in the network illustrates the information that must be communicated to com-

and the coding scheme being used. Therefore, choosing the begpute a distributed wavelet transform across nodes. Using a single

coding strategy leads to solving for the minimal cost path in a stage 5/3 integer wavelet transform, a pair of DWT coefficients

state transition diagram that represents the various coding meth-{y[2n], y[2n + 1]} are calculated as:



As an example, Figure 5 shows the expected transmission cost
at each node using this entropy coding strategy neglecting the over-

y2n+1] = z2n+1] - Ll(a:[2n + 2] + z[2n]) | head cost of “learning” data statistics at earlier nodes. We can see
) 2 . that the transmission cost for DWT history quantities dominates

y2n] = z2n]+ [Sw2n+1]+y2n—1]) + =]. the total cost at each node. Therefore itis more important to effec-

4 2 tively encode history quantities than update quantities. For many

sensor web scenarios the most relevant objective may be to min-
imize the maximum transmission cost at any node, which, in our

Herey[2n + 1] is the high-pass DWT coefficienj[2n] is the low- model, is the last node in the chain.

pass DWT coefficient, and(:] is the sensor data input at node
i. Because communication is unidirectional (forward only), the

values ofy[2n] andy[2n + 1] cannot be computed until no@e + 70
2. @ 60
S total cost
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y[0] y[0] Fig. 5. Example of transmission cost at each node using entropy

coding in a distributed wavelet transform framework.

Fig. 4. Information that must be communicated in a dis-
tributed wavelet transform framework. The update quantities Figure 6 shows the rate distortion performance achieved by

{z[2n], z[2n + 1], y[2n — 1]} (in blue) are needed at node + 2 (a) the proposed entropy coding approach in a distributed wavelet
to calculate the new DWT coefficient pair; the history quantities transform framework; and (b) simply entropy coding quantized
{y[0],y[1],--- ,y[2n — 2]} (in green) are the previously calcu- sample differences. The input source data are 12-bit integers pro-
lated DWT coefficients that must be relayed to the sink. duced as quantized version of a second order AR process with
poles ai).99¢*77/5%, The gap between the curves represents the
Information to be transmitted falls into two categoriasp- benefit of the combined distributed DWT and entropy coding ap-

dateinformation needed to compute the new DWT coefficient pair, Proach compared to the simpler alternative.
andhistoryinformation communicating the values of DWT coef-
ficients computed at past nodes. Our entropy coding task is to effi-
ciently encode a quantized version of the history and update infor-
mation. We assume that update quantities are encoded at higher fi-
delity (i.e., using a quantizer with a smaller stepsize) [6,7]. The is-
sue of selecting quantization stepsizes (bit allocation) is addressed
in Section 4.

At each even-indexed sensor nozle, the DWT coefficient
pair {y[2n — 1], y[2n — 2]} is calculated using the update quanti-
ties. The high-pass coefficiep2n — 1] is quantized and encoded
directly; to encodej[2n — 2], the quantized version @fi2n — 2], 10°
the differencey[2n — 2] — §[2n — 4] is computed and encoded i
to exploit some of the remaining correlation. We assume that the 40 50 60 70 8o 90 100
cost of computation at each node is much less than the cost of com- transmission cost at 20th node (bits)
munication. With this in mind, each node can perform the inverse

DWT using the quantized history information to produce estimates Fig, 6. Rate distortion performance comparing transmission cost
of past sensor sample valug§]. To encode the sensor input data  at the 20th node in a chaa) using the proposed entropy coding
z[2n], the difference between[2n] and#[2n — 2] is computed  approach in a distributed wavelet transform framework, @nd

and encoded using a variable length code. simply entropy coding the quantized sample differences.
For our variable length codes we use the family of Golomb

codes [19] [20]. Golomb codes are known to be optimal for ge-

ometric distributions of nonnegative integers [14]. An important

step in coding is to determine the value of the code parameter 4, BIT ALLOCATION

to minimize the average code length for a given distribution. We

adopt the sequential parameter estimation method used in LOCOWe have been investigating new bit allocation techniques for our
1 [31] image compression. In this method the parametés cho- distributed wavelet transforms. Standard bit allocation techniques
sen to be the smallest power of 2 that is greater than the averagdor wavelet transforms achieve optimal bit allocation via subband
absolute value of past observed sequence. In our framework, thes coding. Given a particular filter bank (FB) structure with syn-
values are readily available as we decode the history informationthesis FB outputs, the variance of each output is computed and
from past nodes. used (possibly in conjunction with weighting factors as for bi-

o_‘
l

MSE distortion




orthogonal FBs [28]) to allocate bits to each subband using tech- 5. NEW DISTRIBUTED TRANSFORMS
niques developed in [17]. Note that if data is sampled at regu-
larly spaced intervals, and if the information being gathered can We now consider improvements to our existing system by intro-
be modeled by a spatially stationary process, then the informationducing novel transform techniques. The existing system essen-
in each subband (e.g., all the low-pass wavelet coefficients) cantially uses a series of independent 1D wavelet transforms, with
also be modeled as a stationary process, for which these standargne transform performed along each route in the network. Because
bit allocation techniques are well suited. routes merge on their way to the sink, a simple differential encod-
However, the placement of nodes in wireless sensor networksing is applied where paths overlap [5] so that overall data trans-
is random and irregular in general. Existing techniques assign themission is reduced. However, this approach for “merging” two
same number of bits to all coefficients corresponding to a sub- 1D transforms is suboptimal in that it is essentially non-critically
band and cannot exploit the irregular sampling structure inherentsampled, i.e., additional information has to be sent for each path
in wireless sensor networks. This motivates the need for a new bitmerge, whereas a critically sampled transform would require send-
allocation technique that can adapt itself to any 2D deployment of ing only as many coefficients as there are nodes in the network. In
nodes. Our goal here is to develop a better generic bit allocationaddition, this does not fully exploit data correlation across multi-
technique for lifting transforms on irregularly placed nodes. ple paths (particularly at merge points). The main advantages of
We propose a simple and intuitive solution to locally optimize  this approach are simplicity, and the fact that the transform is in-
bit allocation. Rather than estimate the variance of each of the herently tied to an efficient routing structure and is performed in a
M subbands produced by our filter, we can instead estimate theynidirectional manner (no backwards data transmissions).
variance (over time) of the wavelet coefficient corresponding to Other distributed 2D lifting transforms done in [15, 29, 30] can
each node. In this case we would havevariance values foN  achieve more data de-correlation and hence more efficiently coded
nodes rather tha/ < IV variance values for each subband. This - gata since more than two neighboring nodes per node participate
localizes the bit allocation and should lead to gains in coding ef- i, the transform as is the case in our existing system. However this
ficiency. We can achieve further improvements in bit allocation if |e5(ds to situations where at some nodes data may need to be sent
we use locally adaptive filtering [S] in conjunction with the locally  away from the sink, resulting in backward data transmission. Such
adaptive bit allocation already discussed. Computing the variancesyransforms may also require nodes to transmit data to other nodes
in this way leads to a bit allocation technique that is locally adap- that are not very close spatially, particularly at coarser levels of
tive to any 2D wavelet transform and outperforms existing global decomposition. These transforms may improve coding efficiency
allocation techniques using subband coding. Figure 7 shows anpyt go so at the expense of potentially much higher energy con-
irregularly sampled 1D signal of length 500 with 50 unique sam- symption than our existing method. Clearly a balance between
ple points chosen randomly from 1 to 500. The Signal to Noise jncreased coding efficiency for increased cost need be met.
Ratio (S.NR) versus Energy Consumption _(denoted_ as Cosf) plot g goal in this work is to design a distributed 2D transform
on the right show; tha@ Locally .Adap.tlve Bit AIIocat|op (LA.BA) that can be computed in a unilateral fashion along an efficient rout-
and Locally Adaptive Bit Allocation with Locally Adaptive Filter- ing structure, thereby achieving our desired balance. The trans-
ing (LABA/LAF) are both superior to a global subband allocation ¢, should be critically sampled to avoid the overhead in [5,

method. 7], while avoiding the higher cost associated with distributed 2D
one ot St and el Sampling Vs N transforms. A simple way to do this is to perform the same 1D
s 260 5 unilateral transform wherever paths do not overlap and to perform
2000 ot a 2D transform wherever paths merge.
o0& Consider the random sensor deployment with a shortest path
=r ohe routing tree shown below in the left side of Figure 8. In order
: to apply a lifting transform to such a network, we must first split
the nodes into even and odd nodes at each level of decomposition.
Note that the sets of even and odd nodes need not be equal for a
general lifting transform. Various methods of splitting the nodes
exist including use of Delaunay triangulations as in [12,30]. One
drawback with these splitting techniques is that they are not well

200(

1801

SNR

160

1401

120f —rawss | matched to any particular routing tree. Some data exchange be-
5 & LA tween nodes that are not connected in a given routing tree may
oo e also be necessary, in some cases imposing large cost if nodes are
| far apart.
cost x10° One natural way to ensure that the transform is performed

) along a routing tree is to split the nodes up according to their depth
Fig. 7. Left shows a random irregularly sampled signal and right show  in the tree with respect to the tree’s root node as in the right side
the SNR versus Cost plot for the various bit allocation téghes. of Figure 8. In our case, the root node is the network sink. Using

this notion of splitting, we could assign nodes to be even (update)

In a similar spirit, we have also developed a bit allocation tech- or odd (predict) in one of two ways. Either nodes of odd depth are
nique that is a slight variant on the technique developed in [17]. odd nodes and nodes of even depth are even nodes, or vice versa.
Instead of imposing a rate constraint, we constrain the total energySuppose we use the first splitting method. We then achieve a criti-
consumption. Via standard Lagrange multiplier techniques, we arecally sampled transform that is perfectly aligned with the routing.
able to derive a bit allocation scheme that is very similar in form We call node A a child of node B and node B a parent of node A if
to the solution derived in [17] with the exception that the energy node A forwards its data to node B. We also call node A a neighbor
consumption (a linear function of sum of squared distances alongof node B.
each hop to the sink) per node is also accounted for implicitly and A simple version of this transform works as follows at merge
is fixed. A comparison between the LABA scheme and this fixed points. For an even merge node we multiply its neighboring detail
cost for minimum MSE scheme will be done for a unilateral 2D coefficients by:, sum, then add this sum to the merge node’s data.
transform in the following section, see Figure 9. For an odd merge node we multiply the raw data of its neighboring



represents how the measurements are formed from samples is a
M x N matrix whose elements can be random coefficients such
as Bernoulli or Gaussian random variables.

To apply CS to wireless sensor network, we consider energy
consumption and routing, which previously has not been explicitly
taken into account in the context of CS. In most previous work in
the field of CS, the measurements are linear combinations of every
sample of input signal, i.e® is a full matrix. This approach can
not be directly applied to wireless sensor network due to its in-

®
%4

herently high energy consumption. Based on the assumption that
® energy is dissipated only during data transmission among sensors,
we need to design an algorithm that efficiently collects M mea-
surements then transmits them to the sink.

For energy efficiency, we consider a sparse measurement ma-
trix which contains a few non-zero random coefficients as its el-
ements for energy-efficiency. Previous work [24] has proposed a
new CS scheme using sparse measurement matrix similar to the
nodes by—2%, sum, then add this sum to the merge node’s data. sparse parity check matrix in LDPC instead of full measurement
We can easily extend the partial coefficient approach developedmatrix. In that work, the sparse measurement matrix showed com-
in [7] by computing and transmitting separate partial coefficients parable performance to the full matrix in terms of the number of
for each coefficient at the merge node using the exact same commeasurements and the reconstruction quality [24]. Taking this idea
putations as in [7]. The parent of the merge node will then com- as a starting point, we are seeking to design an algorithm to con-
plete the computation of the separate coefficients using computa-struct a sparse matrix which minimizes the energy consumption
tions detailed in [7]. A simple performance comparison is done due to data transmission as well.
as shown in Figure 9. The data in this case is highly correlated  The algorithm has to meet three requirements. First, each row
with 100 nodes randomly placed on a 600x600 grid. The unilat- of & contains exactly. non-zero entries (1 or -1). This means that
eral transform is clearly superior to our existing system, and even every measurement consists of the information ftbisensors L
more so when we employ the bit allocation scheme that achievesis chosen based on the properties of the signal that we are trying
minimum MSE for a fixed cost. to transmit (such as sparsity). Second, the non-zero entries are
uniformly distributed over columns; in other words, every sensor

Fig. 8. Shows the equivalent routing structures, where right figode
cates how to decimate the transform. Nodes of odd depth areledidi(l,
12) and nodes of even depth are even (5-10).

600

high correlation, maxDegree = Inf

SNR vs. Cost

has an equal chance to provide the information about its measured
data for measurements. Lastly, given inter-sensor distances, the
solution of the algorithm achieves minimum energy consumption.

For simplification, we assume that the energy consumption can be

» 89 evaluated as the product of the number of bits to be transmitted
I e and the squared distance to the sink.
100 @h«
H o9/
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A major challenge in networking the low-power low-capability ra-
dios of the sensor nodes is that many communication links will
be highly unreliable and lossy, showing asymmetry and large tem-
poral fluctuations, due to multipath fading effects and individual
hardware variance. We are investigating several approaches to im-
proving the reliability of network communications, including rout-
ing algorithms, network coding, and channel coding on individual
links. Our work to date has included an investigation of rateless
erasure-correcting codes suitable for application to node-to-node
links subject to large fluctuations in link availability.

Our link model is that transmissions between nodes are sub-
ject to erasures with unpredictable probabijity Without coding,
erased transmissions are retransmitted to the next node until the
message gets through. This is efficient only if the sending node
A common characteristic of all the transforms described in the pre- knows which transmissions (or portions thereof) are erased. Com-
vious section is that they transmit at least one wavelet coefficient plicated erasure patterns require the use of complicated reverse-
per node for each sampling time. Thus the power consumption in channel link protocols to inform the sending node which transmis-
the system is directly proportional to the number of nodes. We are sions need retransmission. Alternatively, without knowledge of
also considering techniques that exploit known characteristics of when erasures occur, the sending node can transmit pieces of data
the data being measured to make it possible to encode less thaat random until the message gets through. This requires only a
one coefficient per node on average. simple acknowledgment protocol over the reverse channel, but in

To achieve this goal we are investigating the application of this case the sending node needlessly retransmits non-erased data
compressed sensing (CS) techniques. CS is a promising methodis well as erased data. Either alternative can be very costly in terms
that can reconstruct & -sparse signaly, with the size ofV from of the overall energy consumption of the two nodes.

M measurements of the signal [3,13]. The measuremgnts, Fixed-rate forward erasure-correcting codes offer a traditional
RM | are obtained via the linear matrix-vector multiplicatipa= solution to providing reliable communication with minimal energy
dx, with K < M < N. The measurement matrix] which consumption. However, when the link’s erasure statistics are un-

Fig. 9. Left shows routing topology and optimum transform for eactieno
in the network. Right shows SNR versus Cost plots for exgstirethods
compared with new Unilateral 2D method.

6. COMPRESSED SENSING



predictable, fixed-rate codes can spend too much overhead if thefrequency for radio communication and has a data rate of 250
channel is better than expected, or fail altogether if the channelKbps. The available RAM is 10 KB, program space is 48 KB and
is worse than expected. A better solution is an erasure-correctingexternal flash memory is 1MB. The output power can be varied
code whose rate adapts to the actual link statistics. between -25 dB and 0 dB. Onboard sensors provide photo, tem-

A ratelessforward erasure-correcting code is one that commu- perature and humidity measurements. The detail schematic of the
nicates a fixed number of information symbols by transmitting  TMote Sky device is available online [2].

a variable numben of coded symbols. Here a “symbol” can re- Our current in-lab implementation is based on the following
fer to an individual data bit or to an entire data packet. Examples assumptions: i) 1-level 5/3 wavelet compression using lifting, ii)
of rateless codes are Luby'S codeg21], Shokrollahi'sRaptor Linear topology (fixed routing), iii) clear separation of epochs (a
codeg[26], Studholme and Blakewindowed erasure cod¢27], single data value collected from each node in one epoch), iv) ar-

andrandom rateless codd27]. With a rateless code, the actual bitrary (configurable) bit allocation at each node, and v) nodes are
number of transmitted symbotscan vary according to the qual-  controlled from a command center (laptop). We have implemented
ity of the channel. Only a simple acknowledgment protocol is re- the distributed 1-level 5/3 wavelet using the the partial coefficient
quired over the reverse channel to tell the sending node when theequations proposed, with uniform guantization. However, this is
k information symbols are successfully decoded. only for a single data sample per node in a linear topology with
The inventors of LT and Raptor codes measure the overheadknown bit allocation. For concretely demonstrating compression
kT — k of a rateless code on a pure erasure channel in terms ofgains, additional components will be required as follows.
the number of coded symbols™ (out of n) that are successfully First, we will need to develop training phasewhere nodes
received (not erased). LT codes and Raptor codes are asymptoteollect data samples/coefficients and route it to base station. The
ically optimal for channels with an arbitrary and unknown era- base station then has to calculate the relative variance in the node
sure rate. Such codes of unbounded input block size are capacitymeasurements and the optimal bit allocation based on the budget.
achieving in that they can achieve arbitrarily small frame erasure This allocation has to be propagated back to the nodes. The proce-
probability with arbitrarily small percentage average overheads dure has to be repeated at certain intervals based on knowledge of
e = (E{k"}—k)/k ask — oo. Large LT codes and Rap- the phenomena/temporal variations expected. Alternately, nodes
tor codes with practical finite input blocks can achieve extremely can collect a specific number of samples/coefficients, calculate
small frame erasure probabilities with maximum average over- range and variance information and send only this information to
heads: of a few percent. Smaller Raptor codes can achieve mod- the base station which will then propagate the bit-allocation back
erately low frame erasure rates with maximum average overheadso nodes. This will lower the communication cost for training.
of a few percent. Second, support ahultiple levels of wavelet decomposition
Random rateless codes can achieve zero frame erasure probayill be needed, i.e., from the training data, the base station also
bility on the erasure channel with fantastically small average over- needs to determine if, and at which nodes, multiple levels of de-
head E{k"} — k < 1.61 symbols, even with small finite in-  composition will provide compression gains and propagate the same
put blocks, if they are decoded optimally using a “full-rank de- pack to the nodes.
coder” of much higher complexity than the decoder for LT or Rap- Third, packetization/Stuffing strategieged to be developed
tor codes. Windowed erasure codes mimic random rateless codesgo group quantized coefficients into packets. Clearly, transmitting
but use a much sparser density of graph connections. They alsgackets with individual coefficients is inefficient. For obtaining
achieve very small average overheBidk™} — k = 2 to 3 bits, compression gains, it is required to pack the full/partial coefficients
and require “full-rank” decoding. As with random rateless codes, into packets of known byte-lengths. The sensor measurements at
their average overhead is bounded by a small fixed number of bitSeach node have to be accumulated and stored. When a packet con-
independent of the code block size. Decoding complexity of win- tajining several partial coefficients is received from an upstream
dowed erasure codes is intermediate to that of LT or Raptor codesnode, the sensed values at the current node have to be combined
and fully random rateless codes due to the built-in sparseness ofyith the matching coefficients for the current lifting step. We are
the code graph. investigating whether there is an optimal packet length and strate-
For our sensor web application, the relevant question is: What gjes to operate withipdateandhistory, as described in Section 3.
is the best way to construct a rateless forward erasure-correctingDecoding previously transmitted data to predict newly acquired
code that minimizes overhead — even for small input blocks —while gne, and provide more efficient transmissionuptlateinforma-
maintaining reasonable decoding complexity? Uncoded resendsijon, will incrase computation/delay at each node. Instsiatbry
are trivial to decode but are very inefficient, requiring on average information only needs to be relayed towards the base station and
E{k™} ~ klnk non-erased transmissions to decddgymbols creates minimal delay or computation overhead.
successfully. LT and Raptor codes are reasonably easy to decode, | a5t we need to considatorageissues when determining
usingO(kIn k) or O(k) operations, and are much more efficient, \yhere and how to store sensor measurements. There are two main
especially for large block sizes, requiridg{k ™} to exceedk by gptions. We could use RAM if a limited number of samples has
only a few percent. Windowed erasure codes are even more effi-tg pe stored, with the advantage of fast and easy access. Alterna-
cient, requiringE{k ™} to exceedk by only 2 to 3 symbols, even  fjely Flash storage may be considered if a large number of sam-
for small code blocks, but their decoding complexitygk®/?). ples needs to be stored. Because of the delay implications this
Random rateless codes are the most efficient, Wifh ™ } exceed- would have, our various algorithms should be evaluated not only
ing k by less than 1.61 symbols, but their decoding complexity is in terms of computation and delay, but also in terms of their stor-
O(k?). The best choices for our application are windowed erasure age requirements.
codes if the nodes’ computational costs are trivially small relative
to their communication costs, or LT or Raptor codes if the compu- )
tation and communication costs are more comparable. 8.1. Collaboration plans

We are pursuing several avenues to define specific science envi-

8. IMPLEMENTATION ronments for which to customize our techniques and on which to

deploy simple test systems, if possible. In considering what is fea-

The hardware platform being used for in-lab implementation/testingsible we are taking into consideration the capabilities of the motes
is the TMote Sky wireless sensor module [1]. It uses the 2.4 GHz (our target sensor development and testing platform.) We are in



particular focusing on what can be done given the measurement13]
sensor types, communication ranges, etc. The JPL investigators
have started to develop a plan to select specific NASA applications[14]
that could be suitable to demonstrate our techniques. Further, we
have identified a target environment for demonstrating the effec-
tiveness of our compression techniques. AIMS (Australian Insti- [15]
tute of Marine Sciences) is deploying WSNs to monitor growth,
development and health of the corals at the Great Barrier Reef.
Our aim is to set up a long-standing (greater than 1 month) medium[ie]
size (50-100 motes) WSN test bed in conjunction with AIMS. The
plan is to implement and test joint routing and compression al-
gorithms for data collection from the test bed, in addition to non-
trivial tree construction and sleep scheduling algorithms developed[17]
by ANRG.

[18]

9. CONCLUSIONS

In this paper we have provided an overview of a collaborative (19]
project that is designing new approaches for gathering, compres-
sion and representation of spatially correlated data in a sensor net{20
work. This project spans a range of issues, from signal representa
tion and compression optimized for 2D irregularly sampled mea-
surements, to the design of efficient erasure codes to ensure relil21]
able operation. We are working on a testbed system to validate our
designs. [22]
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